0.7W Amber SPHAMTS2N100

Features

- Package : Lead frame package
- Dimension : $2.30 \mathrm{~mm} \times 2.30 \mathrm{~mm}$
- Chip Technology : Flip Chip
- ESD : 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM)
- Qualifications : AEC-Q102 Qualified with RV-level 0

Table of Contents

1. Characteristics 3
2. Product Code Information 4
3. Typical Characteristics Graphs 7
4. Soldering Temperature Location 12
5. Mechanical Dimension 13
6. Soldering Conditions 14
7. Tape \& Reel 15
8. Label Structure 16
9. Packing Structure 17
10. Handling and Use Precautions 18
11. Company Information 19

1. Characteristics

a) Typical Characteristics $\quad\left[\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right]^{[1]}$

Item
Luminous Flux $\left(l_{F}=200 \mathrm{~mA}\right)$

Note:

[1] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
b) Absolute Maximum Rating

Item	Symbol	Rating	Unit
Ambient / Operating Temperature	T_{a}	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
LED Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Maximum Forward current ${ }^{[2]}$ ($\mathrm{Ts}: 25^{\circ} \mathrm{C}$) ${ }^{[3]}$	If	300	mA
Minimum Forward current ${ }^{[2]}$ $\left(\mathrm{Ts}: 25^{\circ} \mathrm{C}\right.$) ${ }^{[3]}$	If	50	mA
Maximum Reverse current		Do not apply for reverse current	
ESD Sensitivity ${ }^{[4]}$	-	± 8 for HBM	kV

Note:

[2] Driving the product at forward current (IF) below Min. IF or above Max. IF may result in unpredictable behavior of the product.
[3] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
[4] It is included the device to protect the product from ESD.

2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

S P H A M

Digit	PKG Information
12	Company name and Samsung LED PKG (SP for Samsung PKG)
3	Power variant (H for automotive high power)
	Color variant (AM for automotive amber color)
6	LED PKG version (T for initial version)
78	Product configuration and type (S2 for automotive 2323 PKG type)
9	Lens configuration (N for no lens)
10	Max power (Internal code)
11,12	Specific property (00 for default)
1314	Forward voltage property
1516	CIE coordination property
1718	Luminous flux property

a) Luminous Flux Bins ${ }^{[5]}$ ($\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$)

Symbol	Flux Bin Code	Flux Range (Im)	
		Min	Max
Φ_{V}	C2	48	56
	D2	56	64
	E2	64	72

b) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{S}}=25^{\circ} \mathrm{C}$)

Symbol	Voltage Bin Code	Voltage Range (V)	
		Min	Max
V_{F}	1D	2.75	3.00
	1E	3.00	3.25
	1 H	3.25	3.40

Note:

[5] Luminous flux measuring equipment: CAS140CT
Φ_{V} and V_{F} tolerances are $\pm 7 \%$ and $\pm 0.1 \mathrm{~V}$ respectively.
c) Color Bin ${ }^{[6]}\left(\mathrm{I}_{\mathrm{F}}=\mathbf{2 0 0} \mathrm{mA}\right)$

Symbol
Cx
Cy
Cx, Cy
A0
$\begin{array}{llllllll}0.5536 & 0.5765 & 0.5883 & 0.5705 & 0.4221 & 0.4075 & 0.4111 & 0.4289\end{array}$

Note

[6] Chromaticity coordinates : Cx, Cy according to CIE 1931. Cx and Cy tolerances are ± 0.005, respectively.

3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=\mathbf{2 0 0} \mathrm{mA}, \mathrm{T}_{\mathrm{S}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

b) Typical Chromaticity Coordinate Shift vs Radiation Angle ($\mathrm{I}_{\mathrm{F}}=\mathbf{2 0 0} \mathrm{mA}, \mathrm{T}_{\mathrm{S}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) ${ }^{[7]}$

Note:
[7] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
c) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$) ${ }^{[8]}$

Note:
[8] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
d) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{2 0 0} \mathrm{mA}$)

e) Derating Curve ${ }^{[9]}$

Note:

[9] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
f) Permissible Pulse Handling Capability ($\mathrm{I}_{\mathrm{F}}=\mathrm{f}\left(\mathrm{t}_{\mathrm{p}}\right)$; D : Duty cycle, $\mathrm{T}_{\mathrm{s}}=125^{\circ} \mathrm{C}$)

g) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{2 0 0} \mathrm{mA}, \mathrm{T}_{\mathrm{S}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

4. Soldering Temperature Location

T_{j} : Temperature of Junction
T_{s} : Temperature of Solder Pad
Rth ${ }_{j \text {-s }}$: Thermal Resistance from Junction to Solder Pad

Front View

Note:

Approximate weight : 10.5 mg .
Unit: mm

a) Pick and Place

Do not place pressure on the resin molded part
It is recommended to use a pick \& place nozzle CNT 3X5, etc.
b) Electric Schematic Diagram

ESD Protection
Diode
c) Material Information

Description	Material
Substrate	SMC Cu Lead Frame
LED Die	GaN
Phosphor	Silicone
Zener Diode	Silicon
Wire	Au
Resin Mold	Silicone

6. Soldering Conditions
a) Pad Configuration \& Solder Pad Layout

Solder paste stencll

Recommended stencil thickness 120 um
<Recommended PCB Land>

Notes:
Unit: mm, Tolerance: $\pm 0.10 \mathrm{~mm}$, recommended stencil thickness $120 \mu \mathrm{~m}$.
b) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

c) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.(one time only)
7. Tape \& Reel
a) Taping Dimension

Notes:
Unit: mm, LED taping quantity: 3,000EA / Reel
b) Reel Dimension

Notes:

mm , Tolerance : $\pm 0.20 \mathrm{~mm}$

8. Label Structure

a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5,6)

Bin Code:

(a)(b): Forward Voltage bin (refer to page 5)
(c)(d): Chromaticity bin (refer to page 6)
(ef): Luminous Flux bin (refer to page 5)
b) Lot Number

The lot number is composed of the following characters:

ABCDEF

SPHAMTS2N100X1DA0D2 AZRASG 01 ||II|||||||||||||||II||||||||||||||||||||||||||||
(1)(2)(3)(4)(5)(6)(8)(9/l(a)(b)(c) $3,000 \mathrm{pcs}$ |||
SAMSUNG
(1)(2)(3)(3)(2)(4)(5)(6)(8)(9 $/ 1$ (a)(b) $/ 3,000 \mathrm{pcs}$

(1)(2)	Production site
(3)	Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4)	Year (G: 2022, H: 2023, I: 2024...)
(5)	Month (1~9, A, B, C)
(6)	Day (1~9, A, B~V)
(7)8(9)	Serial number (001~999)
(a)(b) (c)	Product serial number (001~999)

9. Packing Structure
a) Packing Process

Dimension of Transportation Box in mm

Width	Length	Height
220	245	182

10. Handling and Use Precautions

1) For over-current protection, we recommend the use of resistors to prevent sudden current surges caused by slight shifts in voltage.
2) LEDs should not be contacted to any type of fluid (i.e. water, oil, organic solvent, etc.). If cleaning is required, only use isopropyl alcohol.
3) The maximum ambient temperature must be considered in order for the maximum temperature ratings not to be exceeded.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for 3 months or more after being shipped from Samsung Electronics, they should be packed by a sealed container with nitrogen gas injected. (Shelf life of sealed bags: 12 months, temp. $\sim 40^{\circ} \mathrm{C}, \sim 90 \% \mathrm{RH}$)
5) After storage bag is open, LED subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$.
b. Stored at $<10 \%$ RH.
6) Repack unused products using anti-moisture packing, fold to close any openings and store in a dry place with < 10\% RH
7) LEDs require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) If baking is required, LEDs must be baked for 1 day at $60 \pm 5^{\circ} \mathrm{C}$.
9) LEDs are sensitive to electrostatic discharge and surges. Applying any voltage exceeding the absolute maximum rating of the LED can cause permanent damage to the device. Damaged LEDs may have some unusual characteristics such as increased leakage current, lower turn-on voltage or may light abnormally at low current. When handling LEDs, using grounding wrist-bands or anti-static gloves is recommended.
10) VOCs (volatile organic compounds) present in adhesives, flux, hardeners or organic additives, etc. that are used in luminaires may lead to discoloration of the LED when exposed to heat or light. Note that VOCs can permeate silicone bags. This phenomenon can significantly affect light output from the luminaire. To avoid this issue, please carefully evaluate materials used in your process and/or luminaire to be free of VOCs.

	US
	Samsung Semiconductor, Inc. 11800 Amber park Drive \#225 Alpharetta, GA 30004 USA Tel : +1 6788927385
	Europe
	Samsung Semiconductor Europe GmbH, Einsteinstrasse 174, 81677 Munich, Germany Tel : +49 6196663902
	Japan
	Samsung Japan Corporation 10F, Shinagawa Grand Central Tower 2-16-4, Kounan, Minato-ku, Tokyo 108-8240, Japan Tel : +81 363696267
	China(Shenzhen)
	Samsung Electronics Co., Ltd. 25F/26F, SCC building A, No.88, Haide Yi Road, Nanshan District, 518026, Shenzhen China Tel : +86 2123253551
Copyright @1995-2022 All rights reserved	China(Shanghai)
Samsung Electronics LED BUSINESS	Samsung Electronics Co., Ltd.
1, Samsung-ro Giheung-gu	Building B, No 1065 Zhongshan RD(W), Changning District, Shanghai, China
Yongin-si, Gyeonggi-do 17113 Korea	Tel : +86 2123253504
http://www.samsung.com/led	India
Sales Contact	Samsung Electronics
leedw007@samsung.com	Suite \#006 Ground Floor, Copia Corporate Suites, Jasola, New Delhi 110025, India, Delhi, IND
jh0932.yang@samsung.com	Tel : +919600003320

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2022 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
1, Samsung-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 17113
KOREA
www.samsung.com/led

