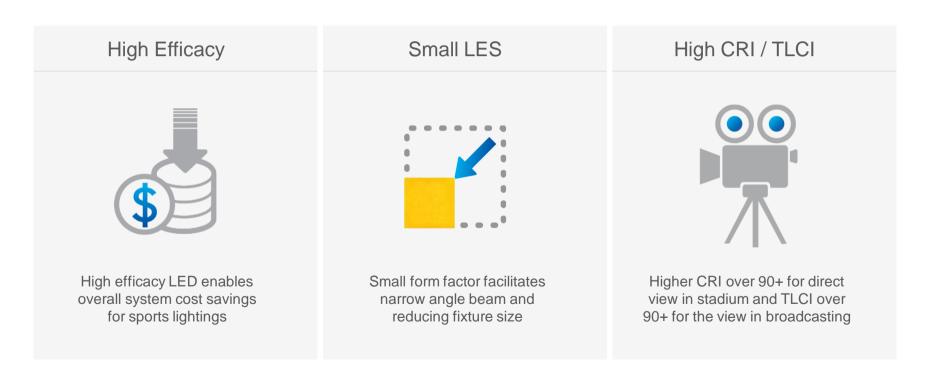


Market Dynamics

The market for LED stadium lighting is growing rapidly with sports industry

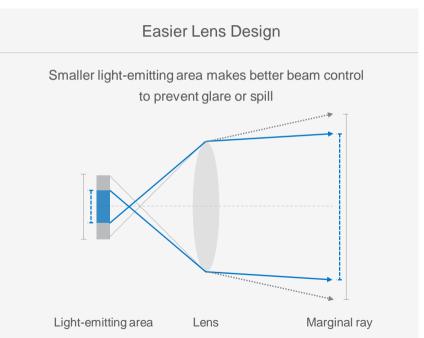


Source: LEDinside (2019)

Key Considerations for Sports Lighting

Following factors should be considered for sports lighting

Industry-leading Efficacy


Ongoing breakthroughs in efficacy, substantive material research, optoelectronic design, and process refinements are the key factors in high power LEDs development

Small LES for Easier Lens Design

CSP delivers same performance in smaller area and helps design a narrow beam

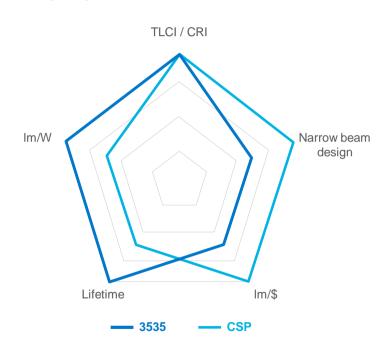
High CRI* and TLCI**

High power LEDs that meet
CRI90+ and TLCI90+ improve
the experiences of audiences
for direct view at the venue and
indirect watching through broadcasting

^{*} Color Rendering Index

^{**} Television Lighting Consistency Index

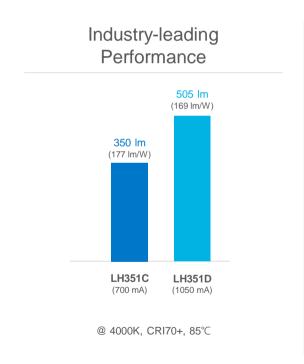
Samsung Sports Lighting Solutions

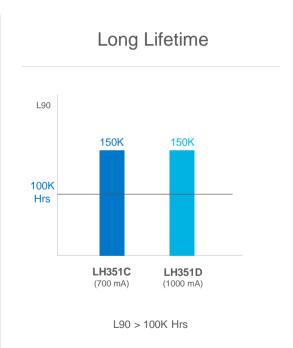

Samsung provides a selection according to various purpose of fixtures

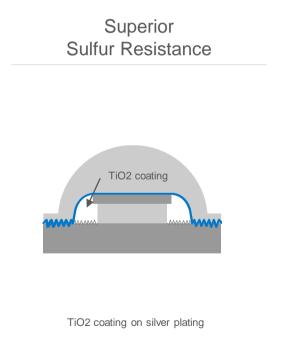
3535

- · High reliability for the stable fixtures
- Standard footprints for greater design flexibility

CSP

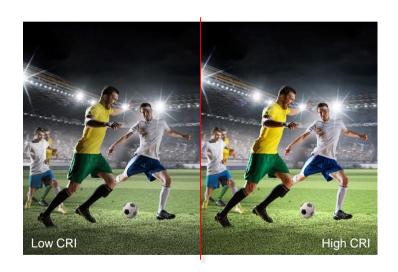

- Mainstream or entry grade fixture with high Im/\$
- Narrow beam design to prevent glare and spill

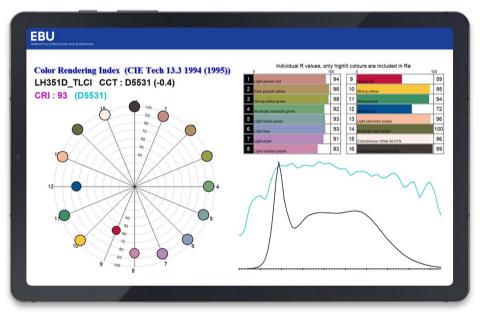




Industry-leading Performance of Ceramic High Power LEDs

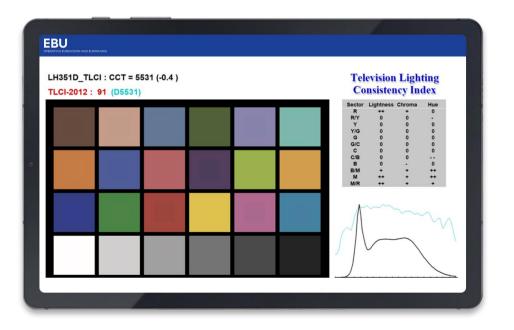
Ceramic high power LEDs deliver leading performance and highest reliability





CRI of LH351D

CRI93 lighting at the stadium enhances the experiences of direct view of spectators



TLCI of LH351D

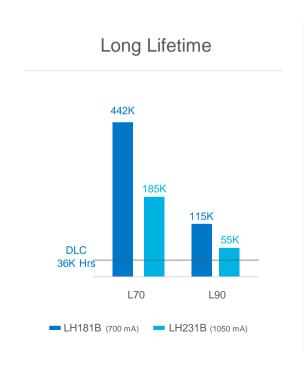
TLCI91 enables to realize natural color for broadcasting

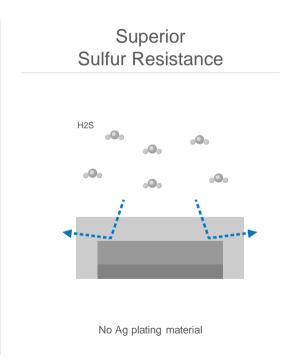
TLCI	Color Correction Activity by TLCI Index	
85 – 100	Errors are so small that a colorist would not consider correcting them	
75 – 85	A colorist would probably want to correct the color performance but could easily get an acceptable result	
50 – 75	A colorist would certainly want to correct the errors, and could probably achieve an acceptable result, but it would take significant time to get there	
25 – 50	The color rendering is poor, and a good colorist would be needed to improve it, but the results would not be to broadcast standard	
0 - 25	The color rendering is bad, and a colorist would struggle for a long time to improve it, and even then the results may not be acceptable for broadcast	

Source: EBU (European Broadcasting Union) TLCI Calculator

Ceramic High Power LH351C & LH351D

Specifications


	LH351C (@ 700mA)	LH351D (@ 1050mA)	
Max Current (mA)	2,000	3,000	
Operating Voltage (V)	2.82	2.83	
Typ. Im	260	414	
lm/W	132	139	
Substrate	ALN		
TLCI	90+ (957)		

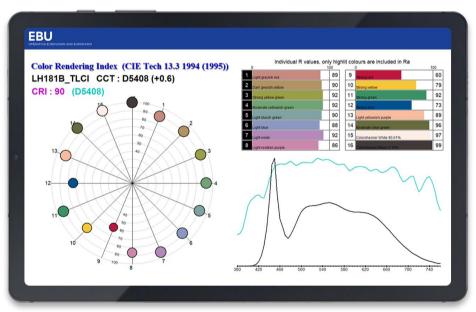


CSP

Industry-leading Performance of CSP LEDs

CSPs enable narrow angle design with smaller emission area than Ceramic HP

Design Flexibility



3535 vs. CSP

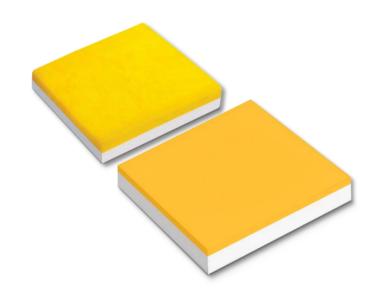
CRI of LH181B

Sports lighting with CRI90+ enhances the spectator experience at the stadium

TLCI of LH181B

TLCI94 enables to realize natural color for broadcasting

TLCI	Color Correction Activity by TLCI Index	
85 – 100	Errors are so small that a colorist would not consider correcting them	
75 – 85	A colorist would probably want to correct the color performance but could easily get an acceptable result	
50 – 75	A colorist would certainly want to correct the errors, and could probably achieve an acceptable result, but it would take significant time to get there	
25 – 50	The color rendering is poor, and a good colorist would be needed to improve it, but the results would not be to broadcast standard	
0 - 25	The color rendering is bad, and a colorist would struggle for a long time to improve it, and even then the results may not be acceptable for broadcast	



Source: EBU (European Broadcasting Union) TLCI Calculator

CSP LH181B & LH231B

Specifications

	LH181B (@ 350mA)	LH231B (@ 700mA)
Max Current (mA)	1,400	2,000
Operating Voltage (V)	2.75	2.85
Typ. Im	125	TBD
lm/W	130	TBD
TLCI	90+ (957)	

@ CRI90+, TLCI 90+, 5700K, 85°C Footprint: 2.36mmx 2.36mm Footprint: 2.80mmx 2.80mm

Thank you