High Power LED FX Series

3W White SPHWH1A1N3Co

Features

Package : Silicone covered White LED package

Dimension : 1.4 mm x 1.8 mmChip Configuration : 1 chip

ESD Voltage: Up to 8 kV acc. to ISO 10605-contact

Viewing Angle: 120°

• Qualifications: The product qualification test based on the guidelines of AEC-Q102.

Table of Contents

1.	Characteristics	 3
2.	Product Code Information	 4
3.	Typical Characteristics Graphs	 7
4.	Soldering Temperature Location	 11
5.	Mechanical Dimension	 12
6.	Soldering Conditions	 13
7.	Tape & Reel	 14
8.	Label Structure	 15
9.	Packing Structure	 16
10.	Precautions in Handling & Use	 17
11.	Company Information	 18

1. Characteristics

a) Typical Characteristics

 $[T_S=25^{\circ}C]^{[1]}$

ltem	Symbol	Value	Unit.
Luminous Flux (I _F = 1,000 mA)	Φγ	Typ. 400	lm
Forward Voltage (I _F = 1,000 mA)	V _F	Typ. 3.0	V
Viewing Angle	Ф	Typ. 120	0
Reverse Current	I _R	Not designed for reverse operation	
Real Thermal Resistance	P	Typ. 4.5	K/W
(Junction to Solder point)	R _{th_J-S} (Real)	Max. 5.2	TV VV
Electrical Thermal Resistance	P., 10/51	Тур. 3.0	K/W
(Junction to Solder point)	R _{th_J-S} (Elec.)	Max. 3.5	I V V V
Radian Surface	Α	1.21	mm²

Note

b) Absolute Maximum Rating

ltem	Symbol	Rating	Unit
Ambient / Operating Temperature	Ta	-40 ~ +125	°C
Storage Temperature	T_{stg}	-40 ~ +125	°C
LED Junction Temperature	Tj	150	°C
Maximum Forward current ^[2] (T _S :25°C) ^[3]	lF	1,500	mA
Minimum Forward current ^[2] (T _S :25°C) ^[3]	lF	50	mA
Maximum Reverse current		Do not apply for reverse current	
ESD Sensitivity ^[4]	-	±8 for HBM	kV

Note:

- [2] Driving the product at forward current (IF) below Min. IF or above Max. IF may result in unpredictable behavior of the product.
- [3] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
- [4] It is included the device to protect the product from ESD.

^[1] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 $\,\mathrm{ms}$.

2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	Р	Н	W	Н	1	Α	1	N	3	C	0	Α	В	C	D	Е	F

Digit	PKG Information
1 2	company name and Samsung LED PKG (SP for Samsung PKG)
3	power variant (H for automotive high power)
4 5	color variant (WH for automotive White color)
6	LED PKG version (1 for 1st version)
7 8	product configuration and type (A1 for automotive 1814 PKG type)
9	lens configuration (N for no lens)
10	Max power (3 for 3±0.5W)
11 12	specific property (C0 for FX Series)
13 14	forward voltage property
15 16	CIE coordination property
17 18	luminous flux property

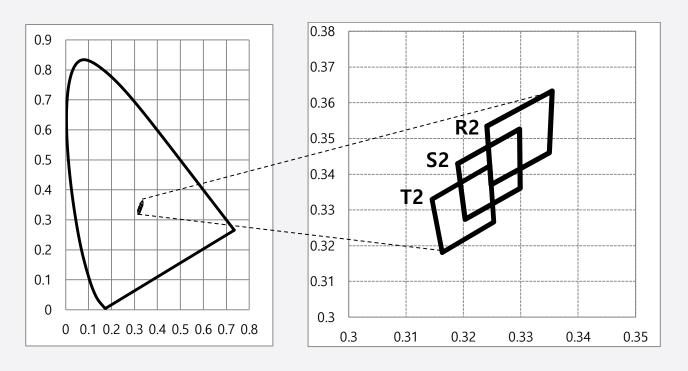
a) Luminous Flux Bins $^{[5]}(I_{F}{=}$ 1,000 mA, $T_{S}{=}$ 25 °C)

Symbol	Flux Bin Code	Flux Rai	nge (lm)
Зуппон	Tiox Bill Code	Min	Max
	7E	345	379
ф	8E	362	398
Φ_{V}	1F	379	417
	2F	398	437

b) Voltage Bins $^{[5]}$ (I_F= 1,000 $\,$ mA, T_S= 25 $^{o}C)$

Symbol	Bin Code	Voltage Range (V)			
Зунион	Bill Code	Min	Max		
	1D	2.75	3.00		
V _F	1E	3.00	3.25		
	1H	3.25	3.40		

Note:

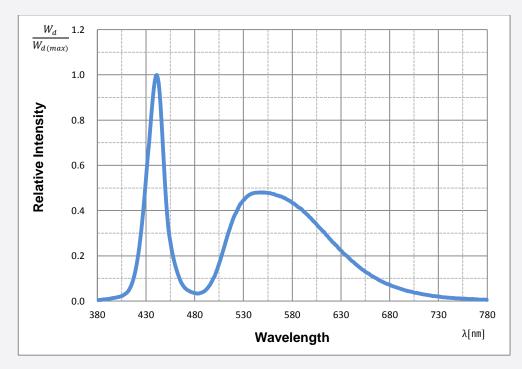

[5] Luminous flux measuring equipment: CAS140CT $$\Phi_V$$ and V_F tolerances are ±7% and ±0.1V, respectively.

c) Color Bins $^{[6]}$ (I_F= 1,000 mA)

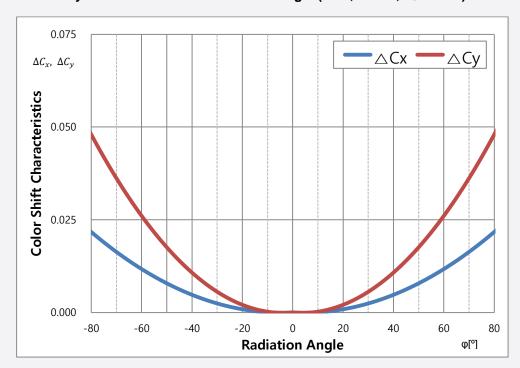
Symbol	Color Bin Code		Cx			Су			
	R2	0.3241	0.3248	0.3350	0.3355	0.3534	0.3370	0.3460	0.3633
Cx, Cy	S2	0.3190	0.3203	0.3299	0.3298	0.3430	0.3274	0.3361	0.3526
	T2	0.3163	0.3145	0.3246	0.3253	0.3181	0.3330	0.3424	0.3266

Note

[6] Chromaticity coordinates: C_x , C_y according to CIE 1931. C_x and C_y tolerances are ± 0.005 , respectively.



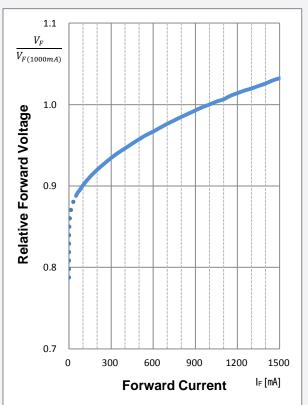
d) Luminous Flux Bins according to Color Bin (I $_{\rm F}$ = 1,000 mA, T $_{\rm S}$ = 25 °C)

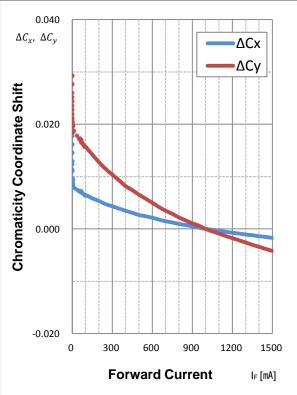

			7E		8	BE		ıF	2	εF
Symbol	Flux Bin Code	Min		Max	Min	Max	Min	Max	Min	Max
		345		379	362	398	379	417	398	437
	R2					0		0		0
Φγ	S 2		0			0		0		
***	T2	0		0						

3. Typical Characteristics Graphs

a) Spectrum Distribution (I_F= 1,000 mA, T_S = 25 °C) [7]

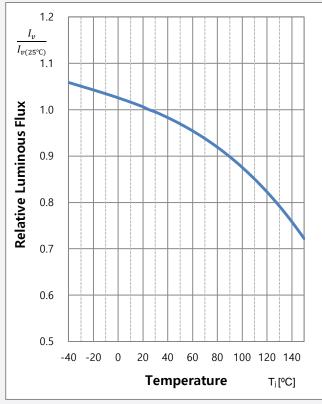
b) Typical Chromaticity Coordinate Shift vs Radiation Angle (IF= 1,000 mÅ, TS= 25 $^{\circ}$ C) [7]

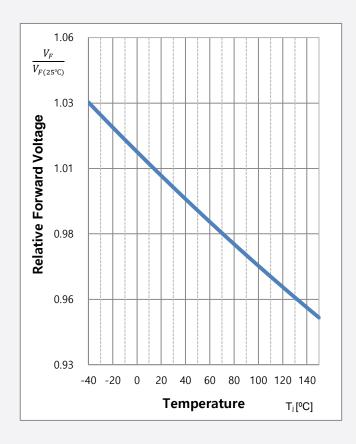


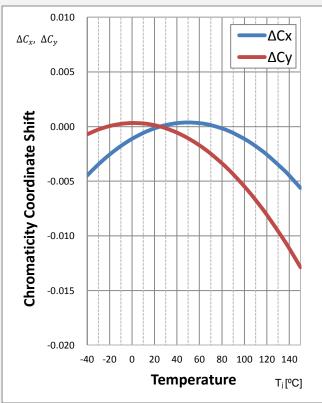

Note:

[7] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms.

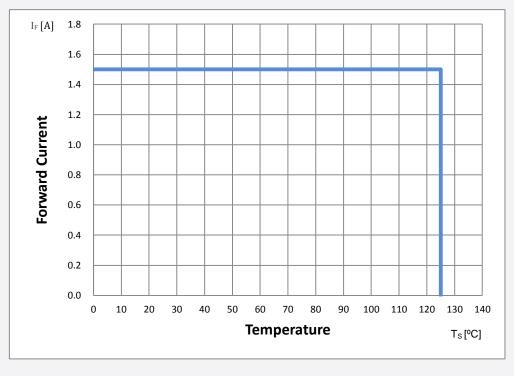
c) Forward Current Characteristics (T $_{\mbox{\footnotesize S}}\!\!=$ 25 $^{\mbox{\footnotesize o}}\mbox{\footnotesize C})^{[8]}$

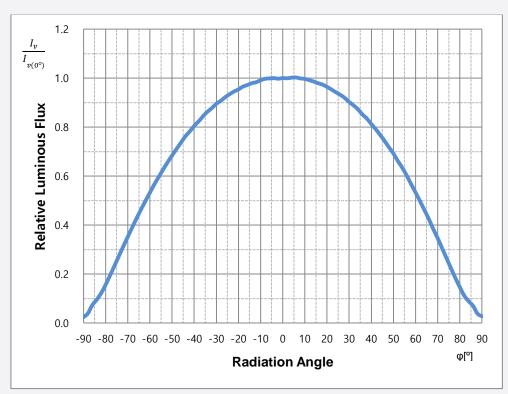


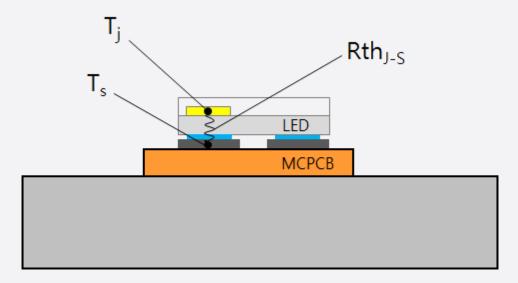



Note:

[8] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms.


d) Temperature Characteristics (I_F= 1,000 mA)

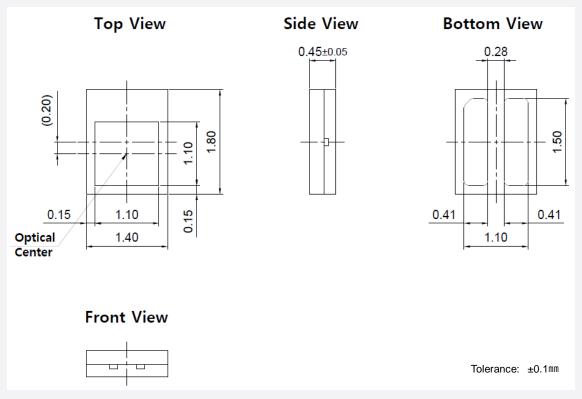

e) Derating Curve [9]


Note:

[9] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms.

f) Beam Angle Characteristics (I_F= 1,000 mÅ, T_S = 25 °C)

4. Soldering Temperature Location



T_j: Temperature of Junction

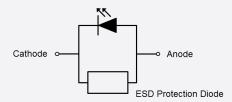
 T_S : Temperature of Solder Pad

 $R_{\text{th_J-S}}\!\!:$ Thermal Resistance from Junction to Solder Pad

5. Mechanical Dimension

Note:

The dimensions in parentheses are for reference purposes.

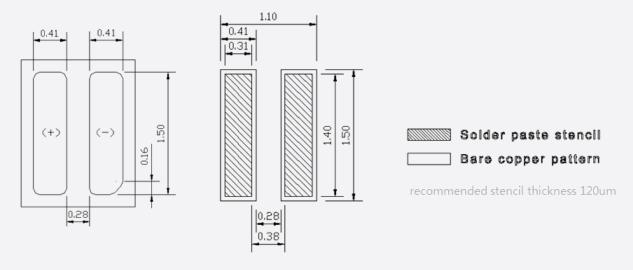

Notes: Unit: mm, Tolerance: ±0.1mm, Approximate Weight: 5.1mg

a) Pick and Place

Do not place pressure on the resin molded part

It is recommended to use a pick & place nozzle AM03-024820A(Hanhwa Techwin), etc.

b) Electric Schematic Diagram

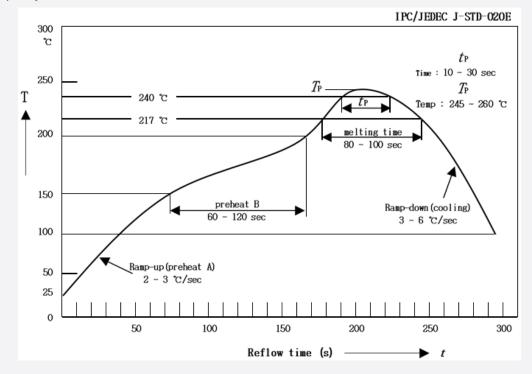


c) Material Information

Description	Material	
Substrate	Cu Lead Frame	
LED Die	Flip Chip	
Phosphor	Phosphor	
Zener Diode	Silicon	
Wire	Au	
Resin Mold	Silicone	

6. Soldering Conditions

a) Pad Configuration & Solder Pad Layout

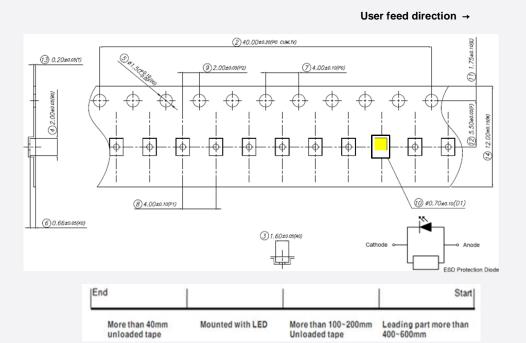


<PKG Pad> <Recommended PCB Land>

Notes: mm, Tolerance : ± 0.10 mm, recommended stencil thickness 120 μm

b) Reflow Conditions (Pb free)

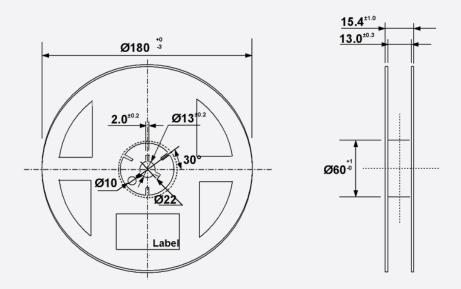
Reflow frequency: 2 times max.



c) Manual Soldering Conditions

Not more than 5 seconds @ max 300 °C, under soldering iron. (One time only)

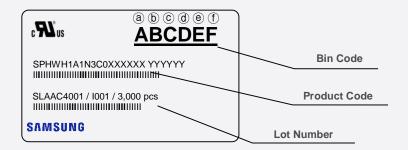
7. Tape & Reel


a) Taping Dimension

Note:

Unit: mm, LED taping quantity: 3,000ea (1 Reel)

b) Reel Dimension

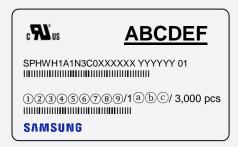


Notes:

Unit: mm, Tolerance: ±0.2 mm

8. Label Structure

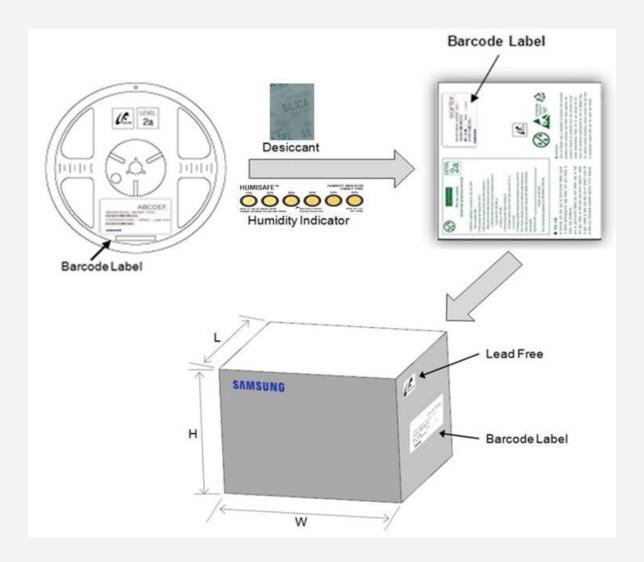
a) Label Structure


Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:

- (a) (refer to page 5)
- ©d: Chromaticity bin (refer to page 6)
- (e) f: Luminous Flux bin (refer to page 5)

b) Lot Number


The lot number is composed of the following characters:

12332	123323456789/Iabc / 3,000 pcs							
12	: Production site							
3	: Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)							
4	: Year (D: 2019, E: 2020, F: 2021)							
(5)	: Month (1~9, A, B, C)							
6	: Day (1~9, A, B~V)							
789	: Serial number (001 ~ 999)							
(a)(b)(c)	: Product serial number (001 ~ 999)							

9. Packing Structure

a) Packing Process

Dimension of Transportation Box in mm

Width	Length	Height
220	245	182

10. Precautions in Handling & Use

- 1) For over-current-proof function, customers are recommended to apply resistors to prevent sudden change of the current caused by slight shift of the voltage.
- 2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.
- 3) When the LEDs illuminate, operating current should be decided after considering the ambient maximum temperature.
- 4) LEDs must be stored in a clean environment. If the LEDs are to be stored for 3 months or more after being shipped from Samsung Electronics, they should be packed by a sealed container with nitrogen gas injected.(Shelf life of sealed bags: 12 months, temp. ~40°C, ~90% RH)
- 5) After storage bag is open, device subjected to soldering, solder reflow, or other high temperature processes must be:
 - a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30°C / 60% RH.
 - b. Stored at <10% RH.
- 6) Repack unused products using anti-moisture packing, fold to close any openings and store in a dry place with <10% RH
- 7) Devices require baking before mounting, if humidity card reading is >60% at 23±5°C.
- 8) Devices must be baked for 1 day at 60±5°C, if baking is required.
- 9) The LEDs are sensitive to the static electricity and surge. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leak current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
- 10) VOCs (volatile organic compounds) may be occurred by adhesives, flux, hardener or organic additives which are used in luminaires (fixture) and LED silicone bags are permeable to it. It may lead a discoloration when LED expose to heat or light. This phenomenon can give a significant loss of light emitted (output) from the luminaires (fixtures). In order to prevent these problems, we recommend you to know the physical properties for the materials used in luminaires, it requires selecting carefully.
- 11) Risk of Sulfurization (or Tarnishing)

The lead frame from Samsung Electronics is a plated package and it may change to black(or dark colored) when it is exposed to Ag (a), Sulfur (S), Chlorine (Cl) or other halogen compound. It requires attention.

Sulfide (Sulfurization) of the lead frame may cause a change of degradation intensity, chromaticity coordinates and it may cause open circuit in extreme cases. It requires attention.

Sulfide (Sulfurization) of the lead frame may cause of storage and using with oxidizing substances together.

Therefore, LED is not recommend to use and store with the below list. : Rubber, Plain paper, lead solder cream etc.

11. Company Information

US

Samsung Semiconductor, Inc. 11800 Amber park Drive #225 Alpharetta, GA 30004 USA Tel: +1 678 892 7385

Europe

Samsung Semiconductor Europe GmbH, Einsteinstrasse 174, 81677 Munich, Germany

Tel: +49 6196 66 3902

Japan

Samsung Japan Corporation 10F, Shinagawa Grand Central Tower 2-16-4, Kounan, Minato-ku, Tokyo 108-8240, Japan

Tel: +81 3 6369 6267

China(Shenzhen)

Samsung Electronics Co., Ltd. 25F/26F, SCC building A, No.88, Haide Yi Road, Nanshan District, 518026, Shenzhen China

Tel: +86 21 2325 3551

China(Shanghai)

Samsung Electronics Co., Ltd. Building B, No 1065 Zhongshan RD(W), Changning District, Shanghai, China

Tel: +86 21 2325 3504

India

Samsung Electonics Suite #006 Ground Floor, Copia Corporate Suites, Jasola, New Delhi 110025, India, Delhi, IND

Tel: +91 9600003320

SAMSUNG

Copyright @1995-2020 All rights reserved

Samsung Electronics LED BUSINESS

http://www.samsung.com/led Sales Contact leedw007@samsung.com cpim@samsung.com

Yongin-si, Gyeonggi-do 17113 Korea

1, Samsung-ro Giheung-gu

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2020 Samsung Electronics Co., Ltd. All rights reserved.

Samsung is a registered trademark of Samsung Electronics Co., Ltd.

Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.

1, Samsung-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA

www.samsung.com/led

